Evolution of clams (cholinesterase-like adhesion molecules): structure and function during development.
نویسندگان
چکیده
The protein family known as CLAMS (cholinesterase-like adhesion molecules) forms a novel class of heterophilic cell adhesion proteins. Family members are found through a wide range of metazoans and play a role during the development of multiple tissues. The majority of members of this family are transmembrane proteins with an extracellular domain that is conserved with cholinesterases including acetylcholinesterase. Yet all family members lack one or more of the residues that make up the catalytic triad necessary for enzymatic function. Therefore the conserved cholinesterase-like domain is not necessary for enzymatic function but does appear to play a role in heterophilic binding. CLAMS are expressed in a wide array of tissues and most family members appear to play a role in cell adhesion and junction formation. The development of junctions including septate junctions and synaptic junctions require CLAM family members such as Gliotactin and Neuroligins respectively. Modeling of the cholinesterase-like domain reveals that evolutionary changes to the binding pocket of the cholinesterase domain may produce a range of different ligand binding partners for CLAM family members. In this vein, previous chimera experiments and recent work has identified mutations in CLAM family members that affect the structure of the cholinesterase-like domain. These mutant forms affect protein function during the development of specialized junctions and confirm the role of the cholinesterase domain in mediating heterophilic binding.
منابع مشابه
Biophysical characterization of the unstructured cytoplasmic domain of the human neuronal adhesion protein neuroligin 3.
Cholinesterase-like adhesion molecules (CLAMs) are a family of neuronal cell adhesion molecules with important roles in synaptogenesis, and in maintaining structural and functional integrity of the nervous system. Our earlier study on the cytoplasmic domain of one of these CLAMs, the Drosophila protein, gliotactin, showed that it is intrinsically unstructured in vitro. Bioinformatic analysis su...
متن کاملI-13 Infertility with Impaired Zona Pellucida Adhesion of Spermatozoa from Mice LackingTauCstF-64
Background: Fertilization is a multistep process requiring spermatozoa with unique cellular structures and numerous germ cell-specific molecules that function in the various steps. In the highly coordinated process of male germ cell development, RNA splicing and polyadenylation help regulate gene expression to ensure formation of functional spermatozoa. Male germ cells express tauCstF-64 (Cstf2...
متن کاملP-201: The Role of P53 Family Members in Infertility
Background: P53, p63, and p73 transcription factors which are belong to The p53 family, are conserved during evolution. They have important roles in many molecular and cellular functions, including tumor suppression, the development of epithelial cell layers, and the development of central nervous system and immune system. Studies show these molecules also have role in maintaining the genomic i...
متن کاملPentoxifylline Decreases Serum Level of Adhesion Molecules in Atherosclerosis Patients
Background: Inflammation is involved in development, progression, and complications of atherosclerotic disease. Clinical studies have indicated that the level of monocyte chemoattractant protein 1 (MCP-1), IL-18, and adhesion molecules correlates with the severity of atherosclerosis and can predict future cardiovascular events. Experimental studies have shown pentoxifylline (PTX) reduces these ...
متن کاملTexture Evolution in Low Carbon Steel Fabricated by Multi-directional Forging of the Martensite Starting Structuree
It has been clarified that deformation and annealing of martensite starting structure can produce ultrafine-grained structure in low carbon steel. This study aims to investigate the texture evolution and mechanical properties of samples with martensite structure deformed by two different forging processes. The martensitic steel samples were forged by plane strain compression and multi-directio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Frontiers in bioscience : a journal and virtual library
دوره 10 شماره
صفحات -
تاریخ انتشار 2005